Determination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions

author

Abstract:

In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (IHCP). The other advantage of the method is that can be applied to the problems with various types of boundary conditions. The results of numerical experiments are presented and compared with analytical solutions. The results demonstrate the reliability and efficiency of the proposed scheme.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The use of inverse quadratic radial basis functions for the solution of an inverse heat problem

‎In this paper‎, ‎a numerical procedure for an inverse problem of‎ ‎simultaneously determining an unknown coefficient in a semilinear ‎parabolic equation subject to the specification of the solution at‎ ‎an internal point along with the usual initial boundary conditions ‎is considered‎. ‎The method consists of expanding the required‎ ‎approximate solution as the elements of the inverse quadrati...

full text

the use of inverse quadratic radial basis functions for the solution of an inverse heat problem

‎in this paper‎, ‎a numerical procedure for an inverse problem of‎ ‎simultaneously determining an unknown coefficient in a semilinear ‎parabolic equation subject to the specification of the solution at‎ ‎an internal point along with the usual initial boundary conditions ‎is considered‎. ‎the method consists of expanding the required‎ ‎approximate solution as the elements of the inverse quadrati...

full text

Solving an Inverse Heat Conduction Problem by Spline Method

In this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. The given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. A set of temperature measurements at a single sensor location inside the heat conduction body is required. The result show that the proposed meth...

full text

A modified VIM for solving an inverse heat conduction problem

In this paper, we will use a modified  variational iteration method (MVIM) for solving an inverse heat conduction problem (IHCP). The approximation of the temperature and the heat flux at  are considered. This method is based on the use of Lagrange multipliers for the identification of optimal values of parameters in a functional in Euclidian space. Applying this technique, a rapid convergent s...

full text

solving an inverse heat conduction problem by spline method

in this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. the given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. a set of temperature measurements at a single sensor location inside the heat conduction body is required. the result show that the proposed meth...

full text

A Numerical Method for Backward Inverse Heat Conduction Problem With two Unknown Functions

This paper considers a linear one dimensional inverse heat conduction problem with non constant thermal diffusivity and two unknown terms in a heated bar with unit length. By using the WKB method, the heat flux at the end of boundary and initial temperature will be approximated, numerically. By choosing a suitable parameter in WKB method the ill-posedness of solution will be improved. Finally, ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 3 (SUMMER)

pages  175- 183

publication date 2017-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023